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Abstract

The problem of incomplete data—i.e., data with missing or unknown values—in
multi-way arrays is ubiquitous in biomedical signal processing, network traffic
analysis, bibliometrics, social network analysis, chemometrics, computer vision,
communication networks, etc. We consider the problem of how to factorize
data sets with missing values with the goal of capturing the underlying latent
structure of the data and possibly reconstructing missing values (i.e., tensor
completion). We focus on one of the most well-known tensor factorizations that
captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the pres-
ence of missing data, CP can be formulated as a weighted least squares problem
that models only the known entries. We develop an algorithm called CP-WOPT
(CP Weighted OPTimization) that uses a first-order optimization approach to
solve the weighted least squares problem. Based on extensive numerical exper-
iments, our algorithm is shown to successfully factorize tensors with noise and
up to 99% missing data. A unique aspect of our approach is that it scales to
sparse large-scale data, e.g., 1000× 1000× 1000 with five million known entries
(0.5% dense). We further demonstrate the usefulness of CP-WOPT on two
real-world applications: a novel EEG (electroencephalogram) application where
missing data is frequently encountered due to disconnections of electrodes and
the problem of modeling computer network traffic where data may be absent
due to the expense of the data collection process.
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1. Introduction

Missing data can arise in a variety of settings due to loss of information,
errors in the data collection process, or costly experiments. For instance, in
biomedical signal processing, missing data can be encountered during EEG anal-
ysis, where multiple electrodes are used to collect the electrical activity along
the scalp. If one of the electrodes becomes loose or disconnected, the signal is
either lost or discarded due to contamination with high amounts of mechanical
noise. We also encounter the missing data problem in other areas of data min-
ing, such as packet losses in network traffic analysis [2] and occlusions in images
in computer vision [3]. Many real-world data with missing entries are ignored
because they are deemed unsuitable for analysis, but this work contributes to
the growing evidence that such data can be analyzed.

Unlike most previous studies on missing data which have only considered
matrices, we focus here on the problem of missing data in tensors because it
has been shown increasingly that data often have more than two modes of vari-
ation and are therefore best represented as multi-way arrays (i.e., tensors) [4, 5].
For instance, in EEG data each signal from an electrode can be represented as a
time-frequency matrix; thus, data from multiple channels is three-dimensional
(temporal, spectral, and spatial) and forms a three-way array [6]. Social network
data, network traffic data, and bibliometric data are of interest to many appli-
cations such as community detection, link mining, and more; these data can
have multiple dimensions/modalities, are often extremely large, and generally
have at least some missing data. These are just a few of the many data analysis
applications where one needs to deal with large multi-way arrays with missing
entries. Other examples of multi-way arrays with missing entries from different
disciplines have also been studied in the literature [7, 8, 9]. For instance, [7]
shows that, in spectroscopy, intermittent machine failures or different sampling
frequencies may result in tensors with missing fibers (i.e., the higher-order ana-
logues of matrix rows or columns, see Figure 1). Similarly, missing fibers are
encountered in multidimensional NMR (Nuclear Magnetic Resonance) analysis,
where sparse sampling is used in order to reduce the experimental time [8].

Figure 1: A 3-way tensor with missing row fibers (in gray).

Our goal is to capture the latent structure of the data via a higher-order
factorization, even in the presence of missing data. Handling missing data in
the context of matrix factorizations, e.g., the widely-used principal component
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Figure 2: Illustration of an R-component CP model for a third-order tensor X.

analysis, has long been studied [10, 11] (see [3] for a review). It is also closely
related to the matrix completion problem, where the goal is to recover the
missing entries [12, 13] (see §3 for more discussion). Higher-order factorizations,
i.e., tensor factorizations, have emerged as an important method for information
analysis [4, 5]. Instead of flattening (unfolding) multi-way arrays into matrices
and using matrix factorization techniques, tensor models preserve the multi-way
nature of the data and extract the underlying factors in each mode (dimension)
of a higher-order array.

We focus here on the CANDECOMP/PARAFAC (CP) tensor decomposition
[14, 15], which is a tensor model commonly used in various applications [6, 16,
17, 18, 19]. To illustrate differences between matrix and tensor factorizations,
we introduce the CP decomposition for three-way tensors; discussion of the CP
decomposition for general N -way tensors can be found in §4. Let X be a three-
way tensor of size I × J ×K, and assume its rank is R (see [5] for a detailed
discussion on tensor rank). With perfect data, the CP decomposition is defined
by factor matrices A, B, and C of sizes I ×R, J ×R, and K ×R, respectively,
such that

xijk =
R∑
r=1

airbjrckr, for all i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

In the presence of noise, the true X is not observable and we cannot expect
equality. Instead, the CP decomposition should minimize the error function

f(A,B,C) =
1
2

I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

airbjrckr

)2

. (1)

An illustration of CP for third-order tensors is given in Figure 2. The CP
decomposition is extensible to N -way tensors for N ≥ 3, and there are numerous
methods for computing it [20].

In the case of incomplete data, a standard practice is to impute the missing
values in some fashion (e.g., replacing the missing entries using average values
along a particular mode). Imputation can be useful as long as the amount of
missing data is small; however, performance degrades for large amounts of miss-
ing data [10] (also see §5.5). As a better alternative, factorizations of the data
with imputed values for missing entries can be used to re-impute the missing
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values and the procedure can be repeated to iteratively determine suitable val-
ues for the missing entries. Such a procedure is an example of the expectation
maximization (EM) algorithm [21]. Computing CP decompositions by combin-
ing the alternating least squares method, which computes the factor matrices
one at a time, and iterative imputation (denoted EM-ALS in this paper) has
been shown to be quite effective and has the advantage of often being simple
and fast. Nevertheless, as the amount of missing data increases, the perfor-
mance of the algorithm may suffer since the initialization and the intermediate
models used to impute the missing values will increase the risk of converging to
a less than optimal factorization [7]. Also, the poor convergence of alternating
methods due to their vulnerability to flatlining, i.e., stagnation, is noted in [3].

In this paper, though, we focus on using a weighted version of the error
function to ignore missing data and model only the known entries. In that case,
nonlinear optimization can be used to directly solve the weighted least squares
problem for the CP model. The weighted version of (1) is

fW(A,B,C) =
1
2

I∑
i=1

J∑
j=1

K∑
k=1

{
wijk

(
xijk −

R∑
r=1

airbjrckr

)}2

, (2)

where W, which is the same size as X, is a nonnegative weight tensor defined
as

wijk =

{
1 if xijk is known,
0 if xijk is missing,

for all i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

Our contributions in this paper are summarized as follows. (a) We develop
a scalable algorithm called CP-WOPT (CP Weighted OPTimization) for tensor
factorizations in the presence of missing data. CP-WOPT uses first-order opti-
mization to solve the weighted least squares objective function over all the fac-
tor matrices simultaneously. (b) We show that CP-WOPT can scale to sparse,
large-scale data using specialized sparse data structures, significantly reducing
the storage and computation costs. (c) Using extensive numerical experiments
on simulated data sets, we show that CP-WOPT can successfully factor ten-
sors with noise and up to 99% missing data. In many cases, CP-WOPT is
significantly faster than the best published method in the literature [7]. (d) We
demonstrate the applicability of the proposed algorithm on a real data set in
a novel EEG application where data is incomplete due to failures of particular
electrodes. This is a common occurrence in practice, and our experiments show
that even if signals from almost half of the channels are missing, underlying brain
activities can still be captured using the CP-WOPT algorithm, illustrating the
usefulness of our proposed method. (e) In addition to tensor factorizations, we
also show that CP-WOPT can be used to address the tensor completion prob-
lem in the context of network traffic analysis. We use the factors captured by
the CP-WOPT algorithm to reconstruct the tensor and illustrate that even if
there is a large amount of missing data, the algorithm is able to keep the relative
error in the missing entries close to the modeling error.
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The paper is organized as follows. We introduce the notation used through-
out the paper in §2. In §3, we discuss related work in matrix and tensor factor-
izations. The computation of the function and gradient values for the general
N -way weighted version of the error function and the presentation of the CP-
WOPT method are given in §4. Numerical results on both simulated and real
data are given in §5. Conclusions and future work are discussed in §6.

2. Notation

Tensors of order N ≥ 3 are denoted by Euler script letters (X,Y,Z), ma-
trices are denoted by boldface capital letters (A,B,C), vectors are denoted by
boldface lowercase letters (a,b, c), and scalars are denoted by lowercase letters
(a, b, c). Columns of a matrix are denoted by boldface lower letters with a sub-
script (a1,a2,a3 are first three columns of A). Entries of a matrix or a tensor
are denoted by lowercase letters with subscripts, i.e., the (i1, i2, . . . , iN ) entry
of an N -way tensor X is denoted by xi1i2···iN .

An N -way tensor can be rearranged as a matrix; this is called matricization,
also known as unfolding or flattening. The mode-n matricization of a tensor
X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode-n one-dimensional
“fibers” to be the columns of the resulting matrix. Specifically, tensor element
(i1, i2, . . . , iN ) maps to matrix element (in, j) where

j = 1+
N∑

k=1
k 6=n

(ik−1)Jk, with Jk =


1, if k = 1 or if k = 2 and n = 1,
k−1∏
m=1
m6=n

Im, otherwise.

Given two tensors X and Y of equal size I1 × I2 × · · · × IN , their Hadamard
(elementwise) product is denoted by X ∗ Y and defined as

(X ∗ Y)i1i2···iN = xi1i2···iN yi1i2···iN for all in ∈ {1, . . . , In} and n ∈ {1, . . . , N}

The inner product of two same-sized tensors X,Y ∈ RI1×I2×···×IN is the sum
of the products of their entries, i.e.,

〈X,Y 〉 =
I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN =1

xi1i2···iN yi1i2···iN .

For a tensor X of size I1 × I2 × · · · × IN , its norm is

‖X ‖ =
√
〈X,X 〉 =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN =1

x2
i1i2···iN .

For matrices (i.e., second-order tensors), ‖ · ‖ refers to the analogous Frobenius
norm, and for vectors (i.e., first-order tensors), ‖ · ‖ refers to the analogous two-
norm. We can also define a weighted norm as follows. Let X and W be two

5



tensors of size I1 × I2 × · · · × IN . Then the W-weighted norm of X is

‖X ‖W = ‖W ∗X ‖ .

The weighted matrix norm is analogous.
Given a sequence of matrices A(n) of size In × R for n = 1, . . . , N , the

notation JA(1),A(2), . . . ,A(N)K defines an I1×I2×· · ·×IN tensor whose elements
are given by

(
JA(1),A(2), . . . ,A(N)K

)
i1i2···iN

=
R∑
r=1

N∏
n=1

a
(n)
inr
,

for all in ∈ {1, . . . , In} and n ∈ {1, . . . , N}.
For just two matrices, this reduces to familiar expressions: JA,BK = ABT.

Using the notation defined here, (2) can be rewritten as

fW(A,B,C) =
1
2
‖X− JA,B,CK ‖2W .

3. Related Work in Factorizations with Missing Data

In this section, we first review the approaches for handling missing data in
matrix factorizations and then discuss how these techniques have been extended
to tensor factorizations.

3.1. Matrix Factorizations
Matrix factorization in the presence of missing entries is a problem that has

been studied for several decades; see, e.g., [10, 11]. The problem is typically
formulated analogously to (2) as

fW(A,B) =
1
2

∥∥∥X−ABT
∥∥∥2

W
. (3)

A common procedure for solving this problem is EM which combines imputation
and alternation [7, 22]. In this approach, the missing values of X are imputed
using the current model, X̂ = ABT, as follows:

X̄ = W ∗X + (1−W) ∗ X̂,

where 1 is the matrix of all ones. Once X̄ is generated, the matrices A and B
can then be alternatingly updated according to the error function 1

2‖X̄−ABT‖2
(e.g., using the linear least squares method). See [22, 23] for further discussion
of the EM method in the missing data and general weighted case.

Recently, a direct nonlinear optimization approach was proposed for matrix
factorization with missing data [3]. In this case, (3) is solved directly using a
2nd-order damped Newton method. This new method is compared to other
standard techniques based on some form of alternation and/or imputation as
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well as hybrid techniques that combine both approaches. Overall, the conclusion
is that nonlinear optimization strategies are key to successful matrix factoriza-
tion. Moreover, the authors observe that the alternating methods tend to take
much longer to converge to the solution even though they make faster progress
initially. This work is theoretically the most related to what we propose—the
main differences are 1) we focus on tensors rather than matrices, and 2) we use
first-order rather than second-order optimization methods (we note that first
order methods are mentioned as future work in [3]).

A major difference between matrix and tensor factorizations is worth noting
here. In [22, 3], the lack of uniqueness in matrix decompositions is discussed.
Given any invertible matrix G, JA,BK = JAG,BG−TK. This means that there
is an infinite family of equivalent solutions to (3). In [3], regularization is rec-
ommended as a partial solution; however regularization can only control scaling
indeterminacies and not rotational freedom. In the case of the CP model, of-
ten a unique solution (including trivial indeterminacies of scaling and column
permutation) can be recovered exactly; see, e.g., [5] for further discussion on
uniqueness of the CP decomposition.

Factorization of matrices with missing entries is also closely related to the
matrix completion problem. In matrix completion, one tries to recover the miss-
ing matrix entries using the low-rank structure of the matrix. Recent work in
this area [12, 13] shows that even if a small amount of matrix entries are avail-
able and those are corrupted with noise, it is still possible to recover the missing
entries up to the level of noise. In [13], it is also discussed how this problem
relates to the field of compressive sensing, which exploits structures in data
to generate more compact representations of the data. Practically speaking,
the difference between completion and factorization is how success is measured.
Factorization methods aim to increase accuracy in the factors; in other words,
capture the underlying phenomena as well as possible. Completion methods,
on the other hand, seek accuracy in filling in the missing data. Obviously, once
a factorization has been computed, it can be used to reconstruct the missing
entries. In fact, many completion methods use this procedure.

3.2. Tensor Factorizations
The EM procedure discussed for matrices has also been widely employed for

tensor factorizations with missing data. If the current model is JA,B,CK, then
we fill in the missing entries of X to produce a complete tensor according to

X̄ = W ∗X + (1−W) ∗ JA,B,CK,

where 1 is the tensor of all ones the same size as W. The factor matrices are
then updated using alternating least squares (ALS) as those that best fit X̄. See,
e.g., [24, 25] for further details. As noted previously, we denote this method as
EM-ALS.

Paatero [26] and Tomasi and Bro [7] have investigated direct nonlinear ap-
proaches based on Gauss-Newton (GN). The code from [26] is not widely avail-
able; therefore, we focus on [7] and its INDAFAC (INcomplete DAta paraFAC)
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procedure which specifically uses the Levenberg-Marquardt version of GN for
fitting the CP model to data with missing entries. The primary application in
[7] is missing data in chemometrics experiments. This approach is compared
to EM-ALS with the result being that INDAFAC and EM-ALS perform almost
equally well in general with the exception that INDAFAC is more accurate for
difficult problems, i.e., higher collinearity and systematically missing patterns
of data. In terms of computational efficiency, EM-ALS is usually faster but
becomes slower than INDAFAC as the percentage of missing entries increases
and also depending on the missing entry patterns.

Both INDAFAC and CP-WOPT address the problem of fitting the CP model
to incomplete data sets by solving (2). The difference is that INDAFAC is
based on second-order optimization while CP-WOPT is first-order with a goal
of scaling to larger problem sizes.

4. CP-WOPT Algorithm

We consider the general N -way CP factorization problem for tensors with
missing entries. Let X be a real-valued tensor of size I1 × I2 × · · · × IN and
assume its rank is known to be R.2 Define a nonnegative weight tensor W of
the same size as X such that

wi1i2···iN =

{
1 if xi1i2···iN is known,
0 if xi1i2···iN is missing,

for all in ∈ {1, . . . , In} and n ∈ {1, . . . , N}. (4)

The N -way objective function is defined by

fW(A(1),A(2), . . . ,A(N)) =
1
2

∥∥∥(X− JA(1), . . . ,A(N)K
)∥∥∥2

W
. (5)

Due to the well-known indeterminacies of the CP model, it may also be desirable
to add regularization to the objective function as in [20], but this has not been
necessary thus far in our experiments.

Equation (5) is equivalent to

fW(A(1),A(2), . . . ,A(N)) =
1
2
‖Y−Z ‖2 ,

where Y = W ∗X and Z = W ∗ JA(1), . . . ,A(N)K. (6)

The tensor Y can be precomputed as neither W nor X change during the iter-
ations. We will see later that Z can be computed efficiently for sparse W.

2In practice, the rank is generally not known and is not easily determined. Understanding
the performance of the methods under consideration in that scenario is a topic of future work.
Results in [20] indicate that direct optimization methods have an advantage over alternating
least squares approaches when the rank is overestimated.

8



Our goal is to find matrices A(n) ∈ RIn×R for n = 1, . . . , N that minimize
the weighted objective function in (5). This objective function can be considered
as a mapping from the cross product of N two-dimensional vector spaces to R,
i.e.,

fW : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R 7→ R.

Although fW is written as a function of matrices, it can be thought of as a
vector function where the parameter vector contains the vectorized and stacked
matrices A(1) through A(N), i.e.,[

a(1)T
1 · · · a(1)T

R · · · a(N)T
1 · · · a(N)T

R

]T
. (7)

In this view, fW : RP 7→ R, where P = R
∑N
n=1 In. We derive the gradient

of fW in §4.1, and we show how to compute the function and gradient values
efficiently when W is dense in §4.2 and W is sparse in §4.3. Once the function
and gradient are known, any gradient-based optimization method [27] can be
used to solve the optimization problem.

4.1. Gradient
We derive the gradient of (5) by computing the partial derivatives of fW with

respect to each element of the factor matrices, i.e., a(n)
inr

for all in ∈ {1, . . . , In},
n ∈ {1, . . . , N}, and r ∈ {1, . . . , R}. We first rewrite the objective function in
(5) as

fW(A(1),A(2), . . . ,A(N)) =
1
2

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN =1

w2
i1i2···iN{

x2
i1i2···iN − 2xi1i2···iN

R∑
r=1

N∏
n=1

a
(n)
inr

+

(
R∑
r=1

N∏
n=1

a
(n)
inr

)2}
.

Using this expression, it is clear to see that the partial derivatives are given by

∂fW

∂a
(n)
inr

=
I1∑
i1=1

· · ·
In−1∑
in−1=1

In+1∑
in+1=1

· · ·
IN∑
iN =1

w2
i1i2···iN(

−xi1i2···iN +
R∑
l=1

N∏
m=1

a
(m)
iml

)
N∏

m=1
m 6=n

a
(m)
imr

for all in ∈ {1, . . . , In}, n ∈ {1, . . . , N}, r ∈ {1, . . . , R}.

In matrix notation, using Y and Z from (6) and exploiting the fact that W is
binary, we can rewrite the gradient equation as

∂fW

∂A(n)
=
(
Z(n) −Y(n)

)
A(−n), (8)

9



where
A(−n) = A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

for n = 1, . . . , N. The symbol � denotes the Khatri-Rao product and is defined
as follows for two matrices A and B of sizes I ×K and J ×K (both have the
same number of columns):

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aN ⊗ bN

]
where ⊗ denotes the vector Kronecker product.

4.2. Computations with Dense W

Figure 3a shows the algorithmic steps for computing the function and gra-
dient values. Recall that we are optimizing a function of P variables as defined
by the factor matrices A(1) through A(N). From an optimization point of view,
these are stacked to form a single vector of length P as in (7). The gradient
will also be a vector of length P , but we compute it as a series of matrices
G(n) ≡ ∂f

∂A(n) for n = 1, . . . , N . Once again, however, we can vectorize and
stack the N matrices to get a vector of length P :[

g(1)T
1 · · · g(1)T

R · · · g(N)T
1 · · · g(N)T

R

]T
.

4.3. Computations with Sparse W

If a large number of entries is missing, then W is sparse. In this case, there
is no need to allocate storage for every entry of the tensor X. Instead, we can
store and work with just the known values, making the method efficient in both
storage and time. Figure 3b shows analogous computations to Figure 3a in the
case that W is sparse.

Let the ordered set I = {i(1), i(2), . . . , i(Q)} be the indices of the known
values, i.e., all the locations where W = 1. Each i(q), q ∈ {1, . . . , Q}, is an
N-tuple of indices whose nth entry is denoted by i(q)n . The known entries of X

can be stored in an array y of length Q so that

yq = x
i
(q)
1 ,i

(q)
2 ,...,i

(q)
N

for q = 1, . . . , Q.

Observe that ‖W ∗X ‖2 = ‖y ‖2 . Thus, the value of γ is the same in both
Figure 3a and Figure 3b.

In the dense version (Figure 3a), we need to compute Z = W∗JA(1), . . . ,A(N)K.
In the sparse version, we observe that Z is necessarily zero anywhere there is a
missing entry in X. Consequently, it is only necessary to compute the entries of
Z corresponding to known values in I; the vector z corresponds to these known
entries. The computations for Step 2 in Figure 3b can be done efficiently in
MATLAB using the “expanded” vectors technique of [28, §3.2.4]. Let the rth
summand be denoted by u, i.e.,

uq =
N∏
n=1

a
(n)

i
(q)
n r

for q = 1, . . . , Q.
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1. Assume Y = W ∗X and γ = ‖Y ‖2 are precomputed.

2. Compute Z = W ∗ JA(1), . . . ,A(N)K.

3. Compute function value: f = 1
2γ − 〈Y,Z 〉+ 1

2 ‖Z ‖2.

4. Compute T = Y−Z.

5. Compute gradient matrices: G(n) = −T(n)A
(−n) for n = 1, . . . , N .

(a) Dense W.

1. Let I = {i(1), i(2), . . . , i(Q)} be an ordered set of all the locations where
W = 1, i.e., the indices of the known values. Let y be the length-Q
vector of the values of X at the locations indicated by I. Assume y and
γ = ‖y ‖2 are precomputed.

2. Compute the Q-vector z as

zq =
R∑
r=1

N∏
n=1

a
(n)

i
(q)
n r

for q = 1, . . . , Q.

3. Compute function value: f = 1
2γ − yTz + 1

2 ‖ z ‖2.

4. Compute t = y − z.

5. Compute gradient matrices G(n) for n = 1, . . . , N as follows:

g
(n)
jr = −

Q∑
q=1

q:i(q)
n =j

tq N∏
m=1
m 6=n

a
(m)

i
(q)
m r

 .

(b) Sparse W.

Figure 3: CP-WOPT computation of function value and gradient.
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Let v(n) be “expanded” vectors of length Q for n = 1, . . . , N defined by

v(n)
q = a

(n)

i
(n)
q r

for q = 1, . . . , Q. (9)

Then the vector u can be calculated as

u = v(1) ∗ v(2) ∗ · · · ∗ v(N).

This can naturally be done iteratively (i.e., only one v(n) is calculated at a time)
to reduce storage costs. Likewise, each summand u can be iteratively added to
compute the final answer z.

In Step 3, the function values in Figure 3a and Figure 3b are clearly equiva-
lent since y and z contain the nonzero values of Y and Z, respectively. Similarly,
the vector t in Step 4 of Figure 3b represents just the nonzero values of T in
Figure 3a.

The computation of the gradients in Step 6 of Figure 3b performs a matricized-
tensor-times-Khatri-Rao-product (mttkrp) calculation, which has been described
for the sparse data case in [28, §5.2.6]. Here we briefly summarize the method-
ology. The rth column of G(n), g(n)

r is calculated as follows. Let the vectors
v(n) be defined as above in (9), but define u instead as

u = t ∗ v(1) ∗ v(2) ∗ · · ·v(n−1) ∗ v(n+1) ∗ · · · ∗ v(N).

Then (
g(n)
r

)
j

=
∑
i
(q)
n =j

uq for j = 1, . . . , In.

This can be computed efficiently using the accumarray function in MATLAB.

5. Experiments

On both real and simulated three-way data, we assess the performance of
the CP-WOPT method. We compare CP-WOPT with other methods and also
demonstrate its performance on two applications.

5.1. Computational environment
All experiments were performed using MATLAB 2009b on a Linux Worksta-

tion (RedHat 5.2) with 2 Quad-Core Intel Xeon 3.0GHz processors and 32GB
RAM. Timings were performed using MATLAB’s tic and toc functions since
cputime is known to produce inaccurate results for multi-CPU and/or multi-
core systems.

CP-WOPT is implemented using the Tensor Toolbox [29]. We consider dense
and sparse versions, based on the gradient and function computations shown in
Figure 3a and Figure 3b, respectively. We use the nonlinear conjugate gradient
(NCG) method with Hestenes-Stiefel updates [27] and the Moré-Thuente line
search [30] provided in the Poblano Toolbox [31] as the optimization method.
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We compare CP-WOPT to two other methods: EM-ALS (implemented in
the N-way Toolbox for MATLAB, version 3.10 [32]) and INDAFAC [33], which is
a damped Gauss-Newton method proposed by Tomasi and Bro [7]. INDAFAC is
the more related method to CP-WOPT because it is also based on optimization
over all factor matrices simultaneously. Previously, Tomasi and Bro showed
that INDAFAC converged to solutions in many fewer iterations than EM-ALS.
We also present several comparisons against EM-ALS as implemented in the
parafac procedure in the N-way Toolbox.

The stopping conditions are set as follows. All algorithms use the relative
change in the function value fW in (2) as a stopping condition (set to 10−6). In
INDAFAC, the tolerance on the infinity norm of the gradient is set to 10−8 and
the maximum number of iterations is set to 500. In CP-WOPT, the tolerance on
the two-norm of the gradient divided by the number of entries in the gradient is
set to 10−8, the maximum number of iterations is set to 500, and the maximum
number of function evaluations is set to 10000. In EM-ALS, the maximum
number of iterations (equivalent to one function evaluation) is set to 10000.

All the methods under consideration are iterative methods. Starting points
are generated using the left singular vectors of X(n) (X unfolded in mode n) with
missing entries replaced by zero. In our preliminary experiments, this starting
procedure produced significantly better results than random initializations, even
with large amounts of missing data.

5.2. Validation metrics
If the true factors are known, then we can assess the recovery of the fac-

tors via the factor match score (FMS) defined as follows. Let the correct and
computed factorizations be given by

R∑
r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r and

R̄∑
r=1

λ̄r ā(1)
r ◦ ā(2)

r ◦ · · · ◦ ā(N)
r ,

respectively. Without loss of generality, we assume that all the vectors have
been scaled to unit length and that the scalars are positive. Further, we assume
R̄ ≥ R so that the computed solution has at least as many components as the
true solution. (One could add all-zero components to the computed solution if
R̄ < R.) Recall that there is a permutation ambiguity, so all possible matchings
of components between the two solutions must be considered. Under these
conditions, the FMS is defined as

FMS = max
σ∈Π(R,R̄)

1
R

R∑
r=1

(
1−

|λr − λ̄σ(r)|
max{λr, λ̄σ(r)}

) N∏
n=1

|a(n)T
r ā(n)

σ(r)|. (10)

If R̄ = R, then the set Π(R, R̄) is all permutations of 1 to R; otherwise, it is
all possible permutations of all

(
R̄
R

)
mappings of {1, . . . , R̄} to {1, . . . , R}. The

FMS can be between 0 and 1, and the best possible FMS is 1. If R̄ ≥ R, some
components in the computed solution are completely ignored in the calculation
of FMS, but this is not an issue for us because we use R̄ = R throughout.
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We also consider the problem of recovering missing data. Let X be the
original data and let X̂ be the tensor that is produced by the computed model.
Then the tensor completion score (TCS) is

TCS =
‖(1−W) ∗ (X− X̂)‖
‖(1−W) ∗X‖

. (11)

In other words, the TCS is the relative error in the missing entries. TCS is
always nonnegative, and the best possible score is 0.

5.3. Simulated data
We consider the performance of the methods on moderately-sized problems

of sizes 50×40×30, 100×80×60, and 150×120×90. For all sizes, we consider
the case of computing CP decompositions using R = 5. We consider 60%, 70%,
80%, 90% and 95% missing data. The experiments show that the underlying
factors can be captured even if the CP model is fit to a tensor with significant
amount of missing data. This is because the low-rank structure of the tensor is
being exploited. A rank-R tensor of size I ×J ×K has R(I +J +K) degrees of
freedom. The reason that the factors can be recovered even with 95% missing
data is that there is still a lot more data than variables, i.e., the size of the data
is equal to 0.05 IJK which is much greater than the R(I+J+K) variables (see
Table 1). Because it is a nonlinear problem, we do not know exactly how many
data entries are needed in order to recover a CP model of a low-rank tensor.
However, a lower bound for the number of entries needed to recover a low-rank
matrix has been derived in [12].

5.3.1. Generating simulated data
We create the test problems as follows. Assume that the target size is I ×

J ×K and that the number of factors is R. We generate factor matrices A, B,
and C of sizes I × R, J × R, and K × R, respectively, by randomly choosing
each entry from N (0, 1) and then normalizing every column to unit length. Note
that this method of generating the factor matrices ensures that the solution is
unique with probability one for the sizes and number of components that we
are considering because R � min{I, J,K}. Consequently, each matrix has R
linearly independent columns with probability one and the k-rank of each factor
matrix is R. We therefore satisfy the necessary conditions defined by Kruskal
[34] for uniqueness.

We then create the data tensor as

X = JA,B,CK + η
‖X ‖
‖N ‖

N

where N is a noise tensor of the same size as X with entries randomly selected
from N (0, 1) and η is the noise parameter. We use η = 10% in our experiments.

Finally, we set some entries of each generated tensor to be missing accord-
ing to an indicator tensor W. We consider two situations for determining the
missing data: randomly missing entries and structured missing data in the form
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of randomly missing fibers. In the first case, W is a binary tensor such that
exactly bMIJKc randomly selected entries are set to zero, where M ∈ (0, 1)
defines the percentage of missing data. We require that every slice of W (in
every direction) have at least one nonzero because otherwise we have no chance
of recovering the CP factors; this is related to the problem of coherence in the
matrix completion problem where it is well-known that missing an entire row (or
a column) of a matrix means that the true factorization can never be recovered.
In the second case, without loss of generality, we only consider missing fibers in
the third mode. In that case, W is an I ×J binary matrix with exactly bMIJc
randomly selected entries are set to zero, and the binary tensor W is created by
stacking K copies of W together. We again require that every slice of W (in
every direction) have at least one nonzero, which is equivalent to requiring that
W has no zero rows or columns.

For each problem size and missing data percentage, thirty independent test
problems are generated.

5.3.2. Comparisons of CP-WOPT and INDAFAC for randomly missing entries
Perhaps contrary to intuition, we note that smaller problems are generally

more difficult than larger problems for the same percentage of missing data. This
is because the ratio of known entries to variables is higher for larger problems
with the same percentage of missing data. Specifically, we define the ratio ρ as

ρ =
Number of known tensor entries

Number of variables
=

(1−M)IJK
R(I + J +K)

. (12)

In general, smaller values of ρ indicate more difficult problems. Table 1 lists
the ratios for the problems under consideration in this section. Since this is a
nonlinear problem, ρ does not tell the entire story, but it is at least a partial
indicator of problem difficulty.

Table 1: Ratio (ρ) values for different problem sizes and percentages of missing
values with R = 5.

M 50× 40× 30 100× 80× 60 150× 120× 90
60% 40 160 360
70% 30 120 270
80% 20 80 180
90% 10 40 90
95% 5 20 45

Table 2 reports the mean FMS results (across thirty samples) for CP-WOPT
and INDAFAC on problems with randomly missing entries. Included in the table
are the p-values computed for paired-sample t-tests of the FMS scores. We see
that there is no appreciable difference in these results.

The advantage of CP-WOPT is that it can be significantly faster. We com-
pare timings for the “dense” and “sparse” versions of CP-WOPT (both of which
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get the same answers) with INDAFAC in Figure 4. When W is dense (e.g.,
M < 80%), the dense version of CP-WOPT is fastest; as the percentage of
missing data increases, however, the sparse version of CP-WOPT has a clear
speed advantage.

Table 2: FMS comparisons of CP-WOPT and INDAFAC for tensors with ran-
domly missing entries. Mean FMS scores for each method along with p-values
computed for paired-sample t-tests are presented.

Tensor Size M CP-WOPT INDAFAC p-value
50× 40× 30 60% 0.9878 0.9977 0.3256

70% 0.9967 0.9762 0.0831
80% 0.9815 0.9879 0.5944
90% 0.9017 0.9142 0.6131
95% 0.3907 0.3860 0.9183

100× 80× 60 60% 0.9908 0.9873 0.8197
70% 0.9809 0.9990 0.1610
80% 0.9984 0.9984 0.0708
90% 0.9754 0.9957 0.0830
95% 0.9263 0.9390 0.5611

150× 120× 90 60% 0.9724 0.9731 0.9753
70% 0.9896 0.9995 0.3255
80% 0.9888 0.9992 0.3255
90% 0.9979 0.9913 0.3257
95% 0.9742 0.9606 0.4184

5.3.3. Comparisons of CP-WOPT and INDAFAC for structured missing data
We also consider more structured missing data in the case of randomly miss-

ing fibers.
Table 3 reports the mean FMS results (across thirty samples) for CP-WOPT

and INDAFAC on problems with randomly missing fibers. As for the results
for randomly missing entries, the p-values computed for paired-sample t-tests
of the FMS scores are included as well. Contrary to the results for randomly
missing entries, though, there are several cases where there are significantly
different FMS scores; specifically, the case of 90% missing data for tensors of
size 50×40×30 indicates a significantly higher FMS score for CP-WOPT versus
INDAFAC. The 30 test-by-test results for this case are illustrated in Figure 5,
where we see that none of the FMS scores reaches higher than 0.6 for either
method and that more than half of the scores for INDAFAC are close to zero.
However, as both methods fail to solve the problem in each test for this case,
it is unclear what the significantly higher FMS scores indicate. Investigation of
what can be learned about different factorization algorithms in cases with such
low FMS scores is left for future work.

Once again, the advantage of CP-WOPT is that it can be significantly faster.
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Figure 4: Time comparisons of both dense and sparse versions of CP-WOPT
with INDAFAC for tensors with randomly missing entries.

We compare timings for the “dense” and “sparse” versions of CP-WOPT (both
of which get the same answers) with INDAFAC applied to the data with ran-
domly missing fibers in Figure 6. As with the factorizations involving randomly
missing entries, when W is dense (e.g., M < 80%), the dense version of CP-
WOPT is fastest; as the percentage of missing data increases, however, the
sparse version of CP-WOPT has a clear speed advantage.

5.3.4. Comparisons of CP-WOPT and EM-ALS for randomly missing entries
It is well-known that the EM-ALS approach is fast but has some problems.

We refer the reader to [7] for a detailed comparison of INDAFAC and EM-ALS.
Here we just illustrate a few elements that are relevant to CP-WOPT.

Using the same experimental data as in §5.3.2, we used EM-ALS to also
compute the factorizations. The FMS data for CP-WOPT and EM-ALS are
statistically indistinguishable using paired-sample t-tests at the 5% confidence
level except for two cases which are discussed in more detail below. We focus
mainly on the ratio of EM-ALS time to CP-WOPT time (the best of the dense
or sparse timings for each case), which is presented in Table 4. EM-ALS is
faster for 60-80% missing data, with a speed-up of up to 5X. In the cases with
90-95% missing data, however, CP-WOPT (the sparse version in all cases) is
faster, achieving more than a 10X speed-up in some cases. It may be possible
to accelerate EM-ALS using some of the same sparse data techniques as were
used for CP-WOPT, and that is a topic for future research.

There are two cases where the results were statistically distinguishable at the
5% confidence level: (a) 50×40×30 with M = 95%, and (b) 150×120×90 with
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Table 3: FMS comparisons of CP-WOPT and INDAFAC for tensors with ran-
domly missing fibers. Mean FMS scores for each method along with p-values
computed for paired-sample t-tests are presented.

Tensor Size M CP-WOPT INDAFAC p-value
50× 40× 30 60% 0.9845 0.9977 0.1609

70% 0.9893 0.9760 0.4249
80% 0.8261 0.7558 0.1144
90% 0.2526 0.0944 0.0000

100× 80× 60 60% 0.9992 0.9992 0.0317
70% 0.9988 0.9921 0.3256
80% 0.9782 0.9577 0.0770
90% 0.6301 0.6077 0.6209

150× 120× 90 60% 0.9997 0.9889 0.3256
70% 0.9995 0.9869 0.3256
80% 0.9990 0.9923 0.3259
90% 0.8736 0.8903 0.4371

Table 4: Ratio of EM-ALS time to CP-WOPT time for varying sizes and missing
data percentages.

M 50× 40× 30 100× 80× 60 150× 120× 90
60% 0.18 0.24 0.19
70% 0.32 0.26 0.21
80% 0.43 0.42 0.26
90% 2.81 1.45 1.05
95% 13.28 11.40 5.73

M = 90%. The test-by-test results are illustrated in Figure 7. In the first case,
both methods do poorly across the board, making comparisons difficult, though
it might be argued that there are four places where EM-ALS crosses the 0.9 FMS
threshold and so arguably yields interpretable results. In the second case, four
of thirty examples are worse for EM-ALS than CP-WOPT. In contrast, Figure 8
shows two examples where the FMS data are statistically indistinguishable. It
can be seen that sometimes both methods have trouble with the same problem
while other times one or the other is able to solve it — this suggests that hybrid
approaches may be a technique for future study.

5.4. Large-scale simulated data
A unique feature of CP-WOPT is that it can be applied to problems that

are too large to fit in memory if dense storage were used. We consider two
situations:

(a) 500× 500× 500 with 99% missing data (1.25 million known values), and
(b) 1000× 1000× 1000 with 99.5% missing data (5 million known values).
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Figure 5: Test-by-test results comparing CP-WOPT and INDAFAC with sig-
nificantly different FMS data for the case of tensors of size 50 × 40 × 30 with
90% randomly missing fibers. Means are shown as solid lines.

Figure 6: Time comparisons of both dense and sparse versions of CP-WOPT
with INDAFAC for tensors with randomly missing fibers.

5.4.1. Generating large-scale simulated data
The method for generating test problems of this size are necessarily slightly

different than in the dense case because we cannot, for example, generate a full
noise tensor. In fact, the tensors Y = JA,B,CK (the noise-free data) and N

(the noise) are never explicitly fully formed.
Let the tensor size be I × J × K and the missing value rate be M . We

generate the factor matrices as described in §5.3, using R = 5 components.
Next, we create the set I with (1 −M)IJK randomly generated indices; this
set represents the indices of the known (non-missing) values in our tests. The
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(a) 50× 40× 30 with M = 95% (b) 150× 120× 90 with M = 90%

Figure 7: Test-by-test results comparing CP-WOPT and EM-ALS with signifi-
cantly different FMS data. Means are shown as solid lines.

(a) 50× 40× 30 with M = 90% (b) 150× 120× 90 with M = 95%

Figure 8: Test-by-test results comparing CP-WOPT and EM-ALS with signifi-
cantly indistinguishable FMS data. Means are shown as solid lines.
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binary indicator tensor W is stored as a sparse tensor [28] and defined by

wijk =

{
1 if (i, j, k) ∈ I,
0 otherwise.

Rather than explicitly forming all of Y = JA,B,CK, we only calculate its values
for those indices in I. This is analogous to the calculations described for Step 2
of Figure 3b. All missing entries of Y are set to zero, and Y is stored as a sparse
tensor. Finally, we set

X = Y + η
‖X ‖
‖N ‖

N,

where N is a sparse noise tensor such that

nijk =

{
N (0, 1) if (i, j, k) ∈ I,
0 otherwise.

For each problem size, ten independent test problems are generated.

5.4.2. Computational results with CP-WOPT on large-scale data
The computational set-up was the same as that described in §5.1 except that

the tolerance of the two-norm of the gradient divided by the number of entries
in the gradient was set to 10−10 (previously 10−8). The results across all ten
runs for each problem size are shown in Figure 9.

(a) 500× 500× 500 with M = 99% (b) 1000× 1000× 1000 with M = 99.5%

Figure 9: Results for large-scale problems with at least 99% missing data. The
means are shown as solid lines.

In the 500×500×500 case, storing a dense version of the tensor (assuming 8
bytes per entry) would require exactly 1GB. Storing just 1% of the data (1.25M
entries) in sparse format (assuming 32 bytes per entry, one for the value and
three for the indices) requires only 40MB. In our randomly generated experi-
ments, all ten problems were solved with an FMS score greater than 0.99, with
solve times ranging between 200 and 1000 seconds.
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In the 1000×1000×1000 case, storing a dense version of the tensor would re-
quire 8GB. Storing just 0.5% of the data as a sparse tensor (5M entries) requires
160MB. In our randomly generated experiments, only nine of the ten problems
were solved with an FMS score greater than 0.99. The solve times ranged from
2000 to 10000 seconds, approximately 10 times slower than the 500× 500× 500
case, which had half as many variables and 1/4 the nonzero entries. In the
failed case, the optimization method exited because the relative change in the
function tolerance was smaller than the tolerance. We restarted the optimiza-
tion method with no changes except that we use the solution that had been
computed previously as the initial guess. After 985 seconds of additional work,
an answer was found with an FMS score of 0.9999.

5.5. EEG data
In this section, we demonstrate the use of CP-WOPT algorithm in multi-

channel EEG analysis by capturing the underlying brain dynamics even in the
presence of missing signals. We use an EEG data set collected to observe the
gamma activation during proprioceptive stimuli of left and right hand [19]. The
data set contains multi-channel signals (64 channels) recorded from 14 subjects
during stimulation of left and right hand (i.e., 28 measurements in total). For
each measurement, the signal from each channel is represented in both time and
frequency domains using continuous wavelet transform and vectorized (forming
a vector of length 4392); in other words, each measurement can be represented
by a channels by time-frequency matrix. The data for all measurements can
then be arranged as a channels by time-frequency by measurements tensor of
size 64× 4392× 28. For details about the data, see [19].

We model the data using a CP model with R = 3, denoting A, B, and C as
the extracted factor matrices corresponding to the channels, time-frequency, and
measurements modes, respectively. We demonstrate the columns of the factor
matrices in each mode in Figure 10a. The 3-D head plots correspond to the
columns of A, i.e., coefficients corresponding to the channels ranging from low
values in blue to high values in red. The time-frequency domain representations
correspond to the columns of B rearranged as a matrix and again ranging from
low values in blue to high values in red. The bar plots represent the columns
of C. Note that 3 rows of images in Figure 10a (3-D head plot, matrix plot,
bar plot) correspond to columns r = 1, 2, 3 of the factor matrices (A, B, C),
respectively. Observe that the first row of images highlights the differences
between left and right hand stimulation while the second and third rows of
images pertain to frontal and parietal activations that are shared by the stimuli.
Unlike [19], we do not use nonnegativity constraints; we convert tensor entries
from complex to real by using the absolute values of the entries and center the
data across the channels mode before the analysis.

It is not uncommon in EEG analysis that the signals from some channels
are ignored due to malfunctioning of the electrodes. This will create missing
fibers in the tensor (as in Figure 1) when we arrange the data as described
above. To reflect such cases of missing data, we randomly set data for one or
more of the 64 channels for each measurement to be missing, center the tensor
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(a) No missing entries (b) 30 channels missing per measurement

Figure 10: Columns of the CP factor matrices (A, B and C with R = 3) ex-
tracted from the EEG data arranged as a channels by time-frequency by mea-
surements tensor with. The 3-D head images were drawn using EEGLab [35].

across the channels mode ignoring the missing entries and then fit a CP model
with R = 3 to the resulting data using the CP-WOPT algorithm. Let Ā, B̄, C̄
be the factor matrices extracted from a tensor with missing entries using the
CP-WOPT algorithm. Table 5 illustrates how the number of missing channels
per measurement affects the similarity between the columns of factor matrices
extracted from missing data, i.e., Ā, B̄, C̄, and the columns of factor matrices
extracted from the original data with no missing entries, i.e., A,B,C. The
similarity is defined in terms of FMS given in (10). For each number of missing
channels, we generate 50 tensors with randomly missing channels and extract the
corresponding 50 sets of Ā, B̄ and C̄. The values given in the second column
of Table 5 are the average similarities between A,B,C and those 50 sets of
Ā, B̄ and C̄. We observe that as the number of missing channels increases, the
similarities decrease as expected. However, even up to 30 missing channels per
measurement, or about 47% of the data, the extracted factor matrices match
with the original factor matrices well, with similarity measures still around 0.90.
Furthermore, Figure 10b images for Ā, B̄ and C̄ analogous to those for A,B,C
in Figure 10a, illustrates that the underlying brain dynamics are still captured
even when 30 channels per measurement are missing. Note that only slight
local distortions can be observed with respect to the corresponding images for
the original factor matrices in Figure 10a.

It can be argued that the activations of the electrodes are highly correlated
and even if some of the electrodes are removed, the underlying brain dynamics
can still be captured. However, in these experiments we do not set the same
channels to missing for each measurement; the channels are randomly missing
from each measurement. On the other hand, CP decomposition may not be able
to recover factors when data has certain patterns of missing values, e.g., missing
the signals from the same side of the brain for all measurements. However, it is
not very likely to have such data. We still note that the success of the proposed
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approach depends on the patterns of missing entries, which is the case for any
factorization approach proposed for handling missing data.

Table 5: EEG Analysis with Incomplete Data: The similarity between the
columns of A,B,C and the columns of factor matrices extracted by differ-
ent approaches, i.e., CP-WOPT and Imputation. The similarity is measured in
terms of FMS defined in (10).

Number of CP-WOPT Imputation
Missing Channels

1 0.9959 0.9843
10 0.9780 0.8274
20 0.9478 0.6703
30 0.8949 0.4529
40 0.6459 0.2365

Finally, it may also look reasonable to impute missing entries simply with
the mean rather than ignoring them. However, this is not a valid approach
especially as the percentage of missing entries increases [10], which we also
observe in Table 5. Let Â, B̂, Ĉ be the factor matrices extracted from data
with missing entries when missing entries are replaced by the mean across the
channel mode. Since the data is centered across the channels mode, missing
entries are replaced with zeros. The third column of Table 5 shows how the
similarities (again defined in terms of FMS given in (10)) between the columns
of Â, B̂, Ĉ and the columns of the factor matrices extracted from the original
data with no missing entries, i.e., A,B,C, change as the amount of missing
data increases. We can see that imputation may only work for small amounts
of missing data and as the amount of missing data increases, the structure can
be better captured by ignoring the missing entries rather than replacing them
with the means.

5.6. Network traffic data
In the previous section, we were interested in tensor factorizations and cap-

turing the underlying factors in the presence of missing data. In this section,
we address the problem of recovering missing entries of a tensor; in other words,
the tensor completion problem. One domain where this problem is frequently
encountered is network traffic analysis. Network traffic data consists of traffic
matrices (TM), which record the amount of network data exchanged between
source and destinations pairs. Since TMs evolve over time, network data can
be represented as a tensor. For instance, Géant data [36] records the traffic ex-
changed between 23 routers over a period of 4 months collected using 15-minute
intervals. This data set forms a third-order tensor with modes: source routers,
destination routers, and time and each entry indicates the amount of traffic sent
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from a source to a destination during a certain time interval. Missing data arises
due to the expense of the data collection process.

In our study, we have used the Géant data collected in April3; that corre-
sponds to a tensor of size 23× 23× 2756. Let T represent this raw data tensor.
After preprocessing T as X = log(T + 1), we model X using a 2-component CP
model and extract factor matrices for each mode as illustrated in Figure 11.
The first and second row correspond the first and second column of the factor
matrices, respectively. This CP model fits the data well but not perfectly and
there is some unexplained variation left in the residuals. Let X̂ be the tensor
constructed using the computed factor matrices. If we define the modeling error

as ‖X−X̂‖
‖X ‖ , then the error is approximately 0.31 for a 2-component CP model.

Even though extracting more components slightly lowers the modeling error,
models with more components do not look appropriate for the data.

Figure 11: Factor matrices extracted from Géant data using a 2-component CP
model. The first row illustrates the first column of the factor matrices in each
mode and the second row shows the second column of the factor matrices.

In order to assess the performance of CP-WOPT in terms of recovering
missing data, some entries of X are randomly set to missing and a 2-component
CP model is fit to the data with missing entries using the CP-WOPT algorithm.
The extracted factor matrices are then used to reconstruct the data and fill in
the missing entries. These recovered values are compared with the actual values
based on the tensor completion score (TCS) defined in (11). Figure 12 shows
how TCS differs for various amounts of missing data. These are the average

3The data was incomplete for the full four-month period, e.g., 6 days of data was missing
at the end of February. For the analysis, we picked a period with no missing time slices.
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TCS values across thirty runs, where random entries are set to missing. We
observe that the relative error is around 0.31 when there is little amount of
missing data and very slowly increases as we increase the amount of missing
data. The error is only slightly higher, approximately 0.33, even when 95% of
the entries are missing. The error increases sharply when we finally raise the
amount of missing data to 99%. Note that even if there is no missing data,
there will be error due to the modeling error, i.e., 0.31. Figure 12 demonstrates
the robustness of the algorithm with respect to large amounts of missing data
such that the relative error in the missing entries can be kept close to the level
of the modeling error even when the amount of missing data is high.

We have addressed the tensor completion problem using a CP model, which
gives easily-interpretable factors in each mode. However, for the tensor com-
pletion problem, the recovery of the missing entries is more important than the
underlying factors and their interpretability. Therefore, modeling the data us-
ing a restricted model like CP may not be the best approach in this case. It
may be possible to achieve lower modeling error using a more flexible model
such a Tucker3 model, or using matrix factorizations on the unfolded tensor [2].
If these models are fit to the data using algorithms as robust as CP-WOPT,
missing entries may be recovered more accurately. This is a topic of future
research.

Figure 12: Tensor Completion Score for different amounts of missing data for
Géant data when a 2-component CP model fitted using CP-WOPT is used to
recover the missing entries.

6. Conclusions

The closely related problems of matrix factorizations with missing data and
matrix completion have recently been receiving a lot of attention. In this paper,
we consider the more general problem of tensor factorization in the presence
of missing data, formulating the canonical tensor decomposition for incomplete
tensors as a weighted least squares problem. Unlike imputation-based tech-
niques, this formulation ignores the missing entries and models only the known
data entries. We develop a scalable algorithm called CP-WOPT using gradient-
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based optimization to solve the weighted least squares formulation of the CP
problem.

Our numerical studies suggest that the proposed CP-WOPT approach is ac-
curate and scalable. CP-WOPT can recover the underlying factors successfully
with large amounts of missing data, e.g., 90% missing entries for tensors of size
50 × 40 × 30. We have also studied how CP-WOPT can scale to problems of
larger sizes, e.g., 1000× 1000× 1000, and recover CP factors from large, sparse
tensors with 99.5% missing data. Moreover, through the use of both dense and
sparse implementations of the algorithm, we have showed that CP-WOPT was
always faster in our studies when compared to the best alternative approach
based on second-order optimization.

We have demonstrated the practical use of CP-WOPT algorithm in two
different applications. In multi-channel EEG analysis, the factors extracted by
the CP-WOPT algorithm can capture brain dynamics even if signals from some
channels are missing, suggesting that practitioners can now make better use
of incomplete data in their analyses. In network traffic analysis, CP-WOPT
algorithm can be used in the context of tensor completion and recover the
missing network traffic data.

In future studies, we plan to extend our results in several directions. We will
include constraints such as non-negativity and penalties to encourage sparsity,
which enable us to find more meaningful latent factors from large-scale sparse
data. Finally, we will consider the problem of collective factorizations with
missing data, where we are jointly factoring multiple tensors with shared factors.
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